

High Efficiency, Low Cost & Robust Hybrid SOFC/IC Engine Power Generator

Rob Braun, Colorado School of Mines

Project Vision

- Demonstrate a hybrid fuel cell system that can drive both radically lower cost (<850 \$/kW) and ultra-high efficiency (>71%) for 125 kW class distributed power generation applications.
- Integrates lower-temperature, pressurized metal-supported SOFC technology (¼ - ½ scale) with full-scale IC engine, positive displacement BOP, and novel power-conditioning technology.

Project Overview

Fed. funding:	\$3.1M	0
Length	24 mo.	0 0

Team member	Location	Role in project
Mines	Golden, CO	Lead, Systems/Control, SOFC stack, TEA, T2M
Colo State Univ	Ft. Collins, CO	Tail-gas engine, Integration test facility
Kohler Power Systems	Kohler, WI	Engine, Alternator, High efficiency/Low-cost inverter, T2M, Commercialization partner
Air Squared	Broomfield, CO	Scroll Compressor/Expander

Context/History of project

Mines: >20-yr experience on fuel cell systems and SOFC technology.

: **REBELS** and **REFUEL** projects

CSU: **ARID** project; long history in alt. fuels and stationary engines

Kohler: Commercial/Industrial engine power systems from 20 kW to 40 MW

Air Squared: World leader in scroll tech, >50 govt projects, GENSETS

Innovation - Integrate robust, pressurized metal-supported SOFC with high η engine, inverter and rotating equipment

Features:

- ➤ Low cell temp, thermal management → reduce air preheater duty by >60%
- ➤ Pressurization → increases power density, lowers both costs and BOP duty
- Gasified diesel engine converts residual fuel gas to drive auxiliaries (BOP)
- Simple after-treatment enables low engine emissions (NOx, CO)

Technical Objectives & Organization

Outline

- System Modeling for Integration
- Pressurized Stack Activities
- Anode Tail-gas Engine & Inverter Development
- T2M & Risks

Multi-scale modeling moves from physical models to process systems design & control to TEA

(Air-Squared)

Simulation & Application Analysis

System-level Trade Studies: Optimal efficiency represents a balance between stack and BOP

- Stack efficiency increases with pressure due to lower ASR
- System efficiency peaks ~3 bar
 - Balance between stack performance and BOP parasitics
 - Air compressor power increases faster than air expander power

Notes:

 Rotating machinery efficiency is not sensitive to pressure in this study

Stack thermal management is critical to achieving high power density, low cost system designs

Critical system design constraints involve:

- Avoiding carbon deposition and expander inlet temperature limits,
- Staying within stack thermal limits (both ∆T and max T_{PEN})
- Trade-off between high current density design and stack degradation (O&M)
- Heat exchanger performance and cost expectations are also crucial

Mines has built a unique test stand to characterize SOFC stack performance at pressure

Objectives

- Explore SOFC stack performance at up to 5-bar_a pressure
 - Extent of fuel pre-reforming, fuel utilization, and electric current
- Create data sets for calibration & validation of system models

The pressurized stack test stand is comprised of three primary subassemblies

The pressurized stack test stand is comprised of three primary subassemblies

V4 Ceres Power 1-kW stack test module is installed as shown and facility enables ready swap out

- Pressurized testing initiated
- First successful results at 4-bar

The pressurized stack test stand is now online, with electrochemical performance tests ongoing

1-kWe pressurized stack testing now underway (H₂/N₂ and air)

 First round of test results support theoretical performance predictions for pressurization effect on voltage increase

- 90-100mV boost due to pressurization
- Ceres 5-kWe stack to be delivered to Mines in late Fall 2019

High Efficiency Tail Gas Engine Development Pathway

Goals:

1. Develop high efficiency anode tail gas engine

- Characterize fuel burn characteristics
- Validate combustion model
- Determine engine operating envelope
- Design & manufacture engine

2. Test prototype engine with simulated anode tail gas

- Construct fuel cell simulation facility
- Install and test engine in facility
- Verify engine performance targets

CFR Testing – All Fuel Blends Successfully Burned

Testing done for anode tail gas over range of water concentrations

GT Power combustion model calibrated with CFR experimental data and then verified

Calibrated 2-zone combustion model used to accurately predict engine performance while operating with anode tail gas

Prototype Engine Modeling – Engine Operating Envelope

- Validated combustion models used in GT-Power to simulate gasified Kohler diesel engine to establish envelope
- Operating specifications: valve timing, boost pressure, speed, spark timing,...
- Next step: Engine installed in test facility

Inverter development targets 98% efficiency at low capital cost

Inverter Design Targets

- 480VAC 3-Phase Output
- 98% Efficiency at 120kW (150Amps)
- Power Factor Correction up to 0.8pf
- 20 Year Design Life
- Grid Tied with Internal Protection
- Island Operation

Performance

Enabling Technologies:

SiC wide-bandgap switches

- Lower conduction & switching losses
- Higher speed switching, smaller output filter; transformer-less operation

Amorphous Iron Cores

- Lower cores losses, High saturation levels allow compact design
- Compactness reduces winding losses

Phase 1 inverter activites are focused on sub-scale demonstration at low (~2 kW) and medium (15 kW) power

Phase 1

Input: 440VDC Output: 277VAC Power: 2.5kW Losses: ~60W Heat Sink: 250W

Target Efficiency: 98%

Complete

Input: 3 X 440VDC

Output: 3 X 277VAC (480V) Power: 3 X 5kW (15kW)

Losses: 3 X ~160W Heat Sink: 3 X 250W Target Efficiency: 97%

In-Process

Phase 2

Input: 3 X 440VDC

Output: 3 X 277VAC (480V) Power: 3 X 42kW (125kW)

Losses: 3 X ~800W Heat Sink: 3 X 1kW Efficiency: 98.0%

Market analysis provides some insight into current customer motivations

Anticipated First Markets

- Critical loads
- Commercial buildings

Approach to Market

- Customer interviews completed
- LCOE primary reason for adoption
- Environmental was secondary ('green' perception matters)
- Strong preference for PPA to reduce CAPEX & Risk
- Built-in UPS (Storage) has potential to improve ROI -Systems Approach

Commercial Buildings

Risks

SYSTEM-LEVEL

- Control:
 - over dynamic operating range
 - through mode transitions
- SOFC/Engine interactions → Test facility
- Heat exchangers (type, cost, performance)

COMMERCIALIZATION

- Emissions concerns → Bloom
- Spark spread variation
 - Hybrid RE/DG may help

COMPONENTS

SOFC Stack

- Performance (>350 mW/cm²) → multiple pathways identified
- Durability (degradation, coking...)
- Cost trajectory

Engine

- Durability/service intervals for target life cycle (20,000-h) → low rpms, durable diesel
- Combustion control with low-Btu/high moisture content fuel → ECU with sensors
- 35%-LHV engine efficiency target → lower friction, alt. engine platform, high effic. TC
- Fuel flexibility during startup operations → throttle engine, advance timing

The Team

Rob Braun, Mechanical Engineering Neal Sullivan, Mechanical Engineering Tyrone Vincent, Electrical Engineering

Rob Danforth, Director – Engineering Labs Isaac Frampton, Staff Engineer

Todd Bandhauer, Mechanical Engineering
Dan Olsen, Mechanical Engineering
Brett Windom, Mechanical Engineering

Bryce Shaffer

Compressor Concept

Speed: 2200 RPM

P_in: 1.013 Bara

P_out: 3.5 Bara

SV: 1803 cc

VR: 2.41

Compressor Design Features

Design Features

- Enclosed scroll geometry
- Fan Cooling
- Independent drive
- Idler bearing design
- Idler bearing isolation
- Designed to be cast

Design Concerns

- Overall size, machinability
- Bearing cooling

Engine Delivery & Fuel Cell Simulator Construction

- Gasified diesel engine delivered to CSU
- Test cell preparation on-going
- Anticipated start-up: Mid October

Test cell fabrication on schedule

